A framework for exploring air pollution mitigation in the South African Highveld region

<u>Tafadzwa Makonese¹</u>, Harold Annegarn¹, Shonali Pachauri² and Zbigniew Klimont²

- 1. Department of Geography, Environmental Management and Energy Studies, University of Johannesburg
 - 2. International institute of Applied Systems Analysis, Laxenburg, Austria

IIASA Young Scientist Summer Program 2013/14

Background

Aim

• Systematic analysis of air pollution impacts and mitigation opportunities in the Highveld region of South Africa

- Dense settlements with limited access to services and cleaner fuels
- High coal use and reliance in the domestic sector
- Large emissions from power plants
- High peak SO2 measurements and high seasonal PM (smoke)

Existing solutions/approaches

- Similar air pollution issues have been assessed and systematically analysed elsewhere in the world with help of scientific tools
- In Europe, the tools have been used in a successful dialogue between science and policy to identify mitigation opportunities (e.g UNECE Gothenburg Protocol; EU National Emission Ceiling Directive)
- Modelling tools allow for a clear definition of roles for science and for policy makers in finding solutions (e.g. GAINS framework in Europe

Framework/toolbox function/role – which questions can it address?

- What is the current exposure?
- How is it going to change over time?
- Who are the key player (DM & SH) from the polluters and beneficiaries?
- Identify mitigation opportunities
 - How much and where it can be reduced?
 - At what cost?
- What are the targets?
- Allow the simulation of different policy options

Example of existing framework: The GAINS model

Example features/results of the toolbox

time

Health impacts from fine PM in 2000 and 2020 policy

Collaborative effort

- The framework is a collection of tools/models that require collaboration between different communities involving academia, industry, and policy makers
- It needs to be tailored to local issues and circumstances
- For example:
 - GAINS model developed at IIASA
 - AERMOD and CALPUFF dispersion modelling of specific pollutants (PM10, SO2, NOx) and determination of exposure indices.
 - Energy modelling tools
 - Economic modelling tools
 - Access to regional statistics
 - Access to data on spatial distribution of sources
 - Population statistics, e.g., housing densities in the region

The model needs regional data & analysis

- Good inventories/ system of inventories and proper institutions for managing and maintaining them
- Ambient air monitoring network
- Understanding the transition of technology in the past
- Portfolio of available technologies
- Means of introducing the technologies through different policies or system of subsidies
- How quick technology penetration can happen (resistance to change, barriers for implementation)

Referring to current policy discussion

- 'Offset' policy discussion for air quality management currently circulating for public comment
- Strategy for reducing air pollution in low income dense income settlements - Abatement strategies include clean fuels and technologies, technology subsidies
- Integrated assessment models can be used to identify portfolios of measures that improve air quality and reduce emissions at least cost - compare alternative strategies
- Framework can be used to inform the key negotiations on air pollution agreements.

Work with the dispersion modellers

• AERMOD model runs for PM10 for a selected domestic sector (Leandra Township) within the region- highlight hot

GIS housing data in the Highveld region

• GIS data on housing densities for the region

Next steps

- Our thesis is that human exposure is based upon space– time–activity data and spatio-temporal air quality predictions.
- Source apportionment determination of emissions from the domestic sector vs the power sector
- Determination and estimation of population densities in the region using GIS
- Carry out exposure assessment using AERMOD for the affected population
- Determination of exposure indices for sectors within the region

Acknowledgements

- International Institute of Applied Systems Analysis (IIASA) •
- Department of Science and Technology (DST)
- National Research Foundation (NRF) ۲
- University of the Free State (UFS) ullet
- University of Johannesburg (UJ) ٠
- SeTAR Centre, University of Johannesburg ٠
- Global Alliance for Clean Cookstoves (GACC) ٠
- **ESKOM**

Department: Science and Technology **REPUBLIC OF SOUTH AFRICA**

